A new framework for calibrating COVID-19 SEIR models with spatial-/time-varying coefficients using genetic and sliding window algorithms

Huan Zhou^[1], Ralf Schneider^[1], Sebastian Klüsener^[2] and Andreas Backhaus^[2] WSSP'35, HLRS, Germany, 14.04.2023

[1] High Performance Computing Center Stuttgart (HLRS), Germany[2] Federal Institute for Population Research (BiB)

A new framework for calibrating COVID-19 SEIR :: Huan Zhou 1 models

Outline

H L R S

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration
- Results
 - Calibration accuracy

Problem statement

.....

H L R S

- Model calibration (outputs → inputs): improve the simulation output and be closer to available observations
 - Identify the uncertain input parameters
 - Estimate the identified input parameters containing uncertainties

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 3 models

Problem statement

H L R S

- The estimated parameters are spatial-/time-varying; they are common in the epedemical (i.e., SEIR) model
 - Capture the historical trend over time, but spatially the trends differ from location to location

Problem statement

.....

- Challenge: fast and accurate estimation of the spatial-/timevarying parameters
 - Segmentation
 - Segment a complex calibration over a long lifespan into smaller ones over different time slices, which are solved sequentially. The sub-solutions are refined for accuracy and then combine to determine the best trajectory of the parameter
 - Optimization methods
 - Each segmented calibration is prone to facing a highdimensional search space due to spatial variation
 - The applied optimization method should be easy to be parallelized for fast estimation

Outline

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration
- Results
 - Calibration accuracy

Proposed calibration approach

- Segmentation: Overlapping Sliding Window (OSW)
 - The sub-solutions are refined progressively as the window moves forward
- Optimization method: Parallel Genetic Algorithm (PGA)
 - GA is a population-based metaheuristic in poired by the theory of natural evolution
 - Hybrid MPI+OpenMP

HLR

Outline

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration
- Results
 - Calibration accuracy

H L R S

- Use CoSMic model¹ to exemplify and test our calibration approach
- CoSMic
 - Extended Susceptible-Exposed-Infectious-Removed (SEIR) model for pandemic COVID-19 spread
 - Features a region-/weekly-varying coefficient (aka. parameter μ) impacting the reproduction number
 - Calibrated against the ICU data on NUTS-2 level

<µ1, µ2, ..., µN > is a stream of data points over N weeks A vector of optimized values of µ across all NUTS-2 regions at the second COVID-19 week
¹https://github.com/hpcralf/CoSMic

Outline

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration
- Results
 - Calibration accuracy

• Case study with two consecutive calibration executions named A and B, respectively

– Window size: 4; shift factor: 1

Execution	Start week	End week
А	1	а
В	a-2	b

OSW: Segmentation and automation – execution A $H \ \square \ R \ \square \ \square \ \square$

• Segment a stream of time series data $\langle \vec{\mu_1}, \vec{\mu_2}, ..., \vec{\mu_a} \rangle$, the initial window ends at the x-th week to minimally overlap with observed (ICU) data

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 12 models

OSW: Segmentation and automation – execution A $H \ \square \ R \ \square \ \square \ \square$

• Use the estimated $\langle \mu \vec{1}, \mu \vec{2}, ..., \mu \vec{x} \cdot 3 \rangle$ to calculate the simulation status at (x-2)-th week (temporal restart point) from which the next segment starts

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou models

13

OSW: Segmentation and automation – execution A $H \ L \ R \ I \ S$

 Adjust the input range of parameter µ for the next segmented calibration based on the current solution and the difference between the estimated and observed ICU cases at the last day of week x

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 14 models

OSW: Segmentation and automation – execution A $H \ \square \ R \ \square \ S$

• How the input range is adjusted?

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 15 models

OSW: Segmentation and automation – execution A $H \ \square \ R \ \square \ \square \ \square$

 Slide the window by one week and continue to estimate the next segment with the standard window size (i.e.,4)

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou models

16

OSW: Segmentation and automation – execution A

• Execution A proceeds until the *a*-th week is approached

HLRS

17

- Combine the segmented (colored with green) outputs

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou models

OSW: Segmentation and automation – execution B $H \ L \ R \ I \ S$

• Segment $\langle \mu_{a-2}, \mu_{a-1}, ..., \mu_{b} \rangle$; execution B begins from the restart point that is output at the end of execution A

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 18 models

OSW: Segmentation and automation – execution B $H \ L \ R \ I \ S$

- Execution B ends and combines the segmented outputs $- < \vec{\mu}_{a-2}, \vec{\mu}_{a-1}, ..., \vec{\mu}_{b-1}, \vec{\mu}_{b} >$
- Output A Outputs from B $<\overline{\mu_{b-3}},\overline{\mu_{b-2}},\overline{\mu_{b-1}},\overline{\mu_{b}}>$ 1. Restart file at (*b*-2)-th week 2. File indicating the range of μ $\overrightarrow{\mu_{b-4}}, \overrightarrow{\mu_{b-3}}, \overrightarrow{\mu_{b-2}}, \overrightarrow{\mu_{b-1}}$ в $<\mu_{a-2},\mu_{a-1},\mu_{a},\mu_{a+1}>$ $<\overline{\mu_{a-3}},\overline{\mu_{a-2}},\overline{\mu_{a-1}},\overline{\mu_{a-1}}$ $\overline{\mu_{x-1}}, \overline{\mu_x}, \overline{\mu_{x+1}}, \overline{\mu_{x+2}}$ А $<\mu_{x-2},\mu_{x-1},\mu_{x},\mu_{x+1}$ $<\overrightarrow{\mu_1},\ldots,\overrightarrow{\mu_{x-3}},\overrightarrow{\mu_{x-2}},\overrightarrow{\mu_{x-1}},\overrightarrow{\mu_x}>$... x-3 x-2 x-1 x x+1 x+2 ... a-3 a-2 a-1 a a+1 ... b-4 b-3 b-2 b-1 2 1

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou models

19

b

в

А

Week

Outline

HLR

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 20 models

- GA is a population-based metaheuristic inspired by the theory of natural evolution
 - Fitter individuals are more likely to be selected and reproduce offspring of the next generation
- Five components in a basic GA
 - Initial population
 - Fitness evaluation
 - Selection
 - Crossover
 - Mutation

- Master-slave parallelization
 - Fitness evaluation
 - Combines with the problem of interest (CoSMic) → expensive
 - Done in parallel → independency between individuals

PGA: Segmented calibration – workflow of applying PGA to segmented calibration of CoSMic н R S Updated Population initialization GA inputs N individuals GA inputs Population/generation size Lower/Upper bound of the estimated parameter Population initialization Comprise N candidate solutions/individuals Each individual is generated randomly

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 27 models

Outline

- Problem statement
- Solution
 - CoSMic
 - OSW: Segmentation and automation
 - PGA: Segmented calibration
- Results
 - Calibration accuracy

Experimental Environment

- Vulcan (NEC cluster)
 - Infiniband (network)
 - 2x Intel Xeon E5-2660v3 processor
 - 20 cores per node
 - OpenMPI

.....

• Application benchmark: specification.

Sample of German population	GA iı	Iterations of simulation		
100% (83,237,124)	Population: 80	Generation: 10	40	

- Compare the simulated and observed ICU data of all the German NUTS-2 regions over 2+ years
 - Hybrid version on 1600 cores
 - 80 MPI processes; 20 threads per MPI process

.....

Berlin High density: 4,126/km2

HLRS

HLRS

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 31 models

German NUTS-2 map

HLRS

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 32 models

Date

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 33 models

ICU cases

H L R IS

German NUTS-2 map

HLRS

HLRS

Date

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 35 models

H L R S

Conclusion

.....

• Epidemical models containing spatial-/time-varying input parameters are difficult to be calibrated

HLR

- Time-varying \rightarrow Complexity
 - Segmentation
- Spatial-varying \rightarrow High-dimensionality
 - Powerful optimization method
- An approach combining Overlapping Sliding Window (OSW) technique and a hybrid MPI+OpenMP version of the Genetic Algorithm (GA)
 - OSW: segment complex calibration
 - GA: implement the segmented calibration
 - Calibration efficiency is guaranteed
 - Satisfactory calibration accuracy within a reasonable time

• • • • •	••••	• • • • •	••••	••••	• • • • •	• • • • •	••••	 ••••	• • • • •	• • • • •	• • • • •	•••••

Thank You

Questions?

Supported through the project CIRCE www.hlrs.de/projects/detail/circe

:: A new framework for calibrating COVID-19 SEIR :: Huan Zhou 38 models